A 3.3 MJ, Rb⁺¹ Driver Design Based on an Integrated Systems Analysis Wayne R. Meier, John J. Barnard Lawrence Livermore National Laboratory Roger O. Bangerter E.O. Lawrence Berkeley National laboratory 13th International Symposium on Heavy Ion Fusion March 13-17, 2000 San Diego, CA Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 ## Driver cost varies by less than 10% for design point variations of 30% or more #### **Cost relative to reference point cost** Quad field at winding #### Reference case: T for fixed beam radius = 500 MeV Number of beams = 160 Initial pulse duration = 15 μ s Quad field at winding = 3.5 T Direct cost = \$0.7 B ### Total spot size on target varies with the focus half angle of the beam ### Spot radius (mm) vs. focus half angle (mrad) Rb⁺ (A = 85 amu) Final focus length = 5.5 m 99% space charge neutralized Normalize emittance = 1 mm-mrad $\Delta V/V = 10^{-3}$ initially, 4.6x growth ## A minimum of about 160 beams is needed to meet the spot size requirement #### Spot radius (mm) vs. number of beams Combined space charge and emittance contribution is compared to total. **-** 1.7 mm goal ## Transport unit costs (\$/J) decrease with increasing ion energy ### Cost per unit beam energy (\$/J) vs. ion energy The jump in \$/J at 0.9 GeV is due to continued transport of foot pulse beams while only adding energy to main pulse beams. ## Electrostatic transport would be less expense up to an ion energy of ~ 3 MeV #### Transport cost (\$/J) vs. ion energy Because of the small benefit, the reference case design uses all magnetic transport. ## Local core efficiency exceeds 60% for much of the accelerator #### Core efficiency (%) vs. ion energy (GeV) Assuming a pulsed power system efficiency of 75%, an auxiliary power load of 5 MWe (primarily for cryo-cooling), and 5 Hz operation gives: **Driver efficiency = 42%** ## The total mass of ferromagnetic material increases slightly with increasing initial pulse duration ### Mass of core material (10⁶ kg) vs. initial pulse duration (ms) The reference case design with τ_o = 15 μs , uses 1.6 x 10⁷ kg of ferromagnetic material ## The peak core mass per meter (along accelerator) is higher for shorter initial pulse durations ### Core mass per unit length (kg/m) vs. position along accelerator A shorter initial pulse duration, τ_o , gives a higher peak kg/m but also results in a shorter accelerator. This is because we limit the maximum velocity tilt, hence the initial acceleration gradient increases with decreasing τ_o . ## Inner radius of core is minimized by using quad field of 4-5 T Inner radius of core (m) vs. quad field at winding (T) (shown at different points along accelerator) While core radius is minimized with $B_q = 4 - 5$ T, the driver cost is minimized using B_q of ~ 3 T (see cost sensitivity graph). ___ 10 MeV 100 MeV 500 MeV **-** Tmp = 1.44 GeV ## Core inner radius decreases with increasing number of beams, especially at the low energy end #### Inner radius of core (m) vs. number of beams In terms of decreasing the core inner radius, there is little benefit to use more than ~ 100 beams. ## Core inner radius decreases with increasing ion energy ### Core inner radius (m) vs. ion energy (GeV) With 160 beams, the core inner radius ranges from ~1 m at 2 MeV to ~ 0.6 m at 0.5 GeV. Beyond 0.9 GeV (the foot pulse energy), the core radius drops to ~ 0.5 m since only main pulse beams continue to be accelerated. - Pulse length - Pulse duration x 10 - Current - Beam radius - Quad occupancy Initial values: Pulse length = 32 m Pulse duration = $15 \mu s$ Avg. beam radius = 2.0 cm Quad occupancy = 75% Current is fraction of final current = 78 A per beam - Pulse length decreases due to ion acceleration and bunch compression. - Pulse duration reaches a minimum of 200 ns. - Beam radius is reduced from 2.0 to 0.8 cm, then held fixed. - Once beam radius is fixed. quad occupancy drops from 75% to $\sim 20\%$. ### Half lattice period increases with increasing ion energy ### Half lattice period (m) vs. ion energy The half lattice period increases from 0.23 m to 1.45 m over the length of the accelerator. ## Core axial packing fraction, acceleration gradient, and core radial build vs. ion energy As the acceleration gradient approaches the assumed 2 MV/m limit, the core axial packing fraction decreases to 50%, and the core radial build increases to ~ 0.9 m. ### Recent driver designs are much shorter than past designs Early designs: 10 GeV Pb⁺, 1 MV/m maximum gradient → 10 km length **Heidelberg HIF Symposium:** 4 GeV Pb⁺, 1 MV/m maximum gradient → 4 km length Most recent design: 1.4 GeV Rb⁺, 2 MV/m maximum gradient →1 km length ### **Conclusions** - The primary goal of our driver systems analyses is to find research areas with high payoff (e.g., target improvements, high acceleration gradients, core performance and cost, etc.) - In this work, an integrated systems model has been used to investigate a driver design for HIF based on the closed-couple target design - All magnetic transport is used with a maximun acceleration gradient of 2 MV/m giving a total accelerator length less than 1 km - This 3.3 MJ, Rb⁺ driver has estimated direct capital cost of ~\$0.7 B assuming success in component cost reduction R&D - Better models are needed for emittance growth in the accelerator and for the beam transport through the chamber both important for determining if the spot size requirement can be met ### The estimated direct capital cost is \sim \$0.7 B | Subsystem | Direct Cost, \$M | | | |----------------------------|------------------|-----|-----| | 1. Injector | | | 47 | | 2. Magnetic Focus Section | | | 363 | | 2.1 Quad Transport | | 137 | | | Magnets | 70 | | | | Cyrostats | 32 | | | | Refrigeration | 36 | | | | 2.2 Accelerator Modules | | 157 | | | Metglas | 81 | | | | Structures | 49 | | | | Insulators | 27 | | | | 2.3 Accel. Power Supplies | | 32 | | | Pulsers (switches) | 17 | | | | Storage and PFN | 15 | | | | 2.4 Vacuum systems | | 37 | | | 3. Final Transport | | | 65 | | 3.1 Quad magnetic | | 6 | | | 3.2 Dipole Magnetic | | 17 | | | 3.3 Cryostat | | 12 | | | 3.4 Refrigeration | | 17 | | | 3.5 Vacuum System | | 14 | | | 4. Final Focus Magnets | | | 2 | | Driver Equipment Subtotal | | | 477 | | Allowance for I&C | | | 57 | | Allowance for Installation | | | 160 | | Total Direct Cost | | | 694 | ### **Key design parameters for reference case** | Number of beams (Foot / Main / Total) | 36 / 124 / 160 | |---|----------------| | Initial pulse duration | 15 µs | | End radial compression of beam | 500 MeV | | Accelerator quadrupole field at winding | 3.5 T | | Final focus length | 5.5 m | | Beam focus half angle | 6 mrad | ### **Key parameters along accelerator** | | Injector Exit | Foot Pulse | Main Pulse | |----------------------------|---------------|------------|------------| | Ion energy, GeV | 0.002 | 0.90 | 1.44 | | Pulse duration, µs | 15 | 0.20 | 0.20 | | Beta | 0.007 | 0.15 | 0.19 | | Pulse length, m | 32.0 | 9.1 | 11.3 | | Beam current, A | 1.0 | 77 | 78 | | Beam radius (avg.), cm | 1.96 | 0.77 | 0.77 | | Bore radius, cm | 3.66 | 1.73 | 1.73 | | Winding radius, cm | 4.52 | 2.40 | 2.40 | | Field gradient, T/m | 78 | 146 | 146 | | Core inner radius, m | 1.02 | 0.57 | 0.51 | | Core build, m | 0.40 | 0.91 | 0.91 | | Quad Occupancy, % | 75 | 45 | 20.5 | | Half lattice period, m | 0.23 | 1.02 | 1.45 | | Accelerator gradient, MV/m | 0.038 | 2.0 | 2.0 | | Distance from injector, km | 0 | 0.64 | 0.91 | ### Parameters at final focus magnet | | Foot Pulse | Main Pulse | |--------------------------|------------|------------| | Pulse duration, μs | 30 | 8 | | Pulse length, m | 1.35 | 0.45 | | Beam current, kA | 0.52 | 1.95 | | Beam radius, cm | 3.3 | 3.3 | | Bore radius, cm | 5.9 | 5.9 | | Norm. emittance, mm-mrad | 1.0 | 1.0 | | Focus half-angle, mrad | 6 | 6 |